您的位置: 旅游网 > 女人

大数据云计算使预测更准确吗

发布时间:2019-12-07 16:51:28

大数据云计算 使预测更准确吗

长江商报消息 人类生活需要预测,但可靠性却实在不敢让人恭维,鲜有正确。这有人为因素,也有技术缘由。

比如“非样本毛病”。假定有一位司机,驾龄30年,出行2万次

,只产生过2次轻微的剐蹭事故。中秋节跟家人一起喝了很多酒,那么这位司机能否因为此前驾驶记录良好,就认为这次也不会出事故?明显这是错误的想法。因为2万次的出行记录都是无酒驾记录,这次喝多了,此前的记录已无任何统计学意义。或许觉得这样的低级错误预测专家能够避免才对,但其实不然。由美国引发的2008年全球金融危机,人类也就只有一两位预测到,而其他所有的美国评级机构、白宫智囊团、经济学家无一能预测出。究其原因,就是犯了这类“非样本”的预测错误。当情况有变,一味根据过去的记录做出预测,就只能得到错误的答案。

很多人喜欢投资股市。身处牛市,投资者再外行恐怕也能多少赚点钱,但从牛市进入熊市,证券公司一般都是集体出错。这更多的是人为因素。证券分析师出现毛病判断很正常,但犯错一定要避免只有自己犯错,一起犯错就等于自己没出错。比如有人分析出股市有一定几率要崩盘,最好策略却是继续持有。这样股市崩盘了,由于绝大多数同行都不确定何时要崩盘,也都选择持有战略,集体出错,并不会显出自己水平低。但如果贸然卖掉股票,短时间股价却没有跌乃至涨了,就只能表明自己水平不够。

震惊全球的 9 11 恐怖袭击事件让人感觉很突然,其实美国情报机构差点识破这1重大诡计

。2001年8月16日,穆萨维,1名宗教极端主义者被逮捕了。他只进行了飞行培训50个小时,却要求参加波音747客机的摹拟训练。这很诡异

,因此被人举报。事后看这个事情,信号很清晰,有要用飞机炸大楼。在当时,这个信号却被掩盖在几十万条诸如此类的众多噪声中,并不突出,也许他只是个飞行爱好者呢

。有信号,更有噪声,使得预测非常困难。

以上种种因素导致人类预测不甚准确;但还是有办法使得预测更加接近真相,那就是借助贝叶斯定理。这条几率学定理已产生二百多年,是用条件概率推理问题,揭示人们对几率信息的认知加工过程与规律、指导人们进行有效的学习和判断决策。比如一位女性的乳房X光片显示阳性,那末她患乳腺癌的几率会是多少?已有的统计数据显示,如果一位女性未患乳腺癌,X光片呈阳性的几率为10%;如果确实患有乳腺癌,X光片阳性几率为75%;因此X光片呈阳性,常人会认为事情很严重。但如果用贝叶斯定理来分析,她患乳腺癌的几率只有10%,由于40多岁的女性,患乳腺癌几率很低,只有1.4%,也就是说先验概率很低。

大数据时期,虽然信息量爆增,但信号与噪声并存

,要做出正确的预测并不比之前容易,甚至更难。《信号与噪声》1书告诉我们,如果以贝叶斯定理为基础,努力了解事情的因果关系,避免一些不该犯的人为或技术毛病,预测准确率都会提高很多。

(作者系烟台大学经管学院教师)

■ 冯冠军

猜你会喜欢的
猜你会喜欢的